1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
use crate::binarytree::Node::{Internal, Leaf};
use crate::binarytree::RangeIterState::{
InitialState, InternalLeft, InternalRight, LeafLeft, LeafRight,
};
use crate::page_manager::{Page, PageManager, PageMut};
use crate::types::RadbKey;
use std::cell::Cell;
use std::cmp::Ordering;
use std::convert::TryInto;
use std::marker::PhantomData;
use std::ops::{Bound, RangeBounds};
const LEAF: u8 = 1;
const INTERNAL: u8 = 2;
// The references within each variant of the RangeIterState<'a> enum (i.e., the Page
// and parent) must not be dropped before the RangeIterState<'a> itself.
enum RangeIterState<'a> {
InitialState(Page<'a>, bool),
LeafLeft {
page: Page<'a>,
parent: Option<Box<RangeIterState<'a>>>,
reversed: bool,
},
LeafRight {
page: Page<'a>,
parent: Option<Box<RangeIterState<'a>>>,
reversed: bool,
},
InternalLeft {
page: Page<'a>,
parent: Option<Box<RangeIterState<'a>>>,
reversed: bool,
},
InternalRight {
page: Page<'a>,
parent: Option<Box<RangeIterState<'a>>>,
reversed: bool,
},
}
impl<'a> RangeIterState<'a> {
fn forward_next(self, manager: &'a PageManager) -> Option<RangeIterState> {
match self {
RangeIterState::InitialState(root_page, ..) => match root_page.memory()[0] {
// initial state, if it is the leaf node, then we assign it to left leaf
LEAF => Some(LeafLeft {
page: root_page,
parent: None,
reversed: false,
}),
// then the next one should be the internal left (at least we treat it like il)
INTERNAL => Some(InternalLeft {
page: root_page,
parent: None,
reversed: false,
}),
_ => unreachable!(),
},
RangeIterState::LeafLeft { page, parent, .. } => Some(LeafRight {
page,
parent,
reversed: false,
}),
RangeIterState::LeafRight { parent, .. } => parent.map(|x| *x), // back to parent
RangeIterState::InternalLeft { page, parent, .. } => {
let child = InternalAccessor::new(&page).lte_page();
let child_page = manager.get_page(child);
match child_page.memory()[0] {
LEAF => Some(LeafLeft {
page: child_page,
parent: Some(Box::new(InternalRight {
// key point, we need to reset the parent to the right internal node
// so that we can move to the right leaf page (gt_page)
page,
parent,
reversed: false,
})),
reversed: false,
}),
INTERNAL => Some(InternalLeft {
page: child_page,
parent: Some(Box::new(InternalRight {
// understand this is the same as above
page,
parent,
reversed: false,
})),
reversed: false,
}),
_ => unreachable!(),
}
}
RangeIterState::InternalRight { page, parent, .. } => {
let child = InternalAccessor::new(&page).gt_page();
let child_page = manager.get_page(child);
match child_page.memory()[0] {
LEAF => Some(LeafLeft {
page: child_page,
parent,
reversed: false,
}),
INTERNAL => Some(InternalLeft {
page: child_page,
parent,
reversed: false,
}),
_ => unreachable!(),
}
}
}
}
fn backward_next(self, manager: &'a PageManager) -> Option<RangeIterState> {
match self {
RangeIterState::InitialState(root_page, ..) => match root_page.memory()[0] {
LEAF => Some(LeafRight {
page: root_page,
parent: None,
reversed: true,
}),
INTERNAL => Some(InternalRight {
page: root_page,
parent: None,
reversed: true,
}),
_ => unreachable!(),
},
RangeIterState::LeafLeft { parent, .. } => parent.map(|x| *x),
RangeIterState::LeafRight { page, parent, .. } => Some(LeafLeft {
page,
parent,
reversed: true,
}),
RangeIterState::InternalLeft { page, parent, .. } => {
let child = InternalAccessor::new(&page).lte_page();
let child_page = manager.get_page(child);
match child_page.memory()[0] {
LEAF => Some(LeafRight {
page: child_page,
parent,
reversed: true,
}),
INTERNAL => Some(InternalRight {
page: child_page,
parent,
reversed: true,
}),
_ => unreachable!(),
}
}
RangeIterState::InternalRight { page, parent, .. } => {
let child = InternalAccessor::new(&page).gt_page();
let child_page = manager.get_page(child);
match child_page.memory()[0] {
LEAF => Some(LeafRight {
page: child_page,
parent: Some(Box::new(InternalLeft {
page,
parent,
reversed: true,
})),
reversed: true,
}),
INTERNAL => Some(InternalRight {
page: child_page,
parent: Some(Box::new(InternalLeft {
page,
parent,
reversed: true,
})),
reversed: true,
}),
_ => unreachable!(),
}
}
}
}
// this next function will only return the next state
fn next(self, manager: &'a PageManager) -> Option<RangeIterState> {
match &self {
InitialState(_, reversed) => {
if *reversed {
self.backward_next(manager)
} else {
self.forward_next(manager)
}
}
RangeIterState::LeafLeft { reversed, .. } => {
if *reversed {
self.backward_next(manager)
} else {
self.forward_next(manager)
}
}
RangeIterState::LeafRight { reversed, .. } => {
if *reversed {
self.backward_next(manager)
} else {
self.forward_next(manager)
}
}
RangeIterState::InternalLeft { reversed, .. } => {
if *reversed {
self.backward_next(manager)
} else {
self.forward_next(manager)
}
}
RangeIterState::InternalRight { reversed, .. } => {
if *reversed {
self.backward_next(manager)
} else {
self.forward_next(manager)
}
}
}
}
fn get_entry(&self) -> Option<EntryAccessor> {
// If it is a leaf, return the entry
// otherwise, return None
match self {
RangeIterState::LeafLeft { page, .. } => Some(LeafAccessor::new(&page).lesser()),
RangeIterState::LeafRight { page, .. } => LeafAccessor::new(&page).greater(),
_ => None,
}
}
}
// TODO: T should be a RangeBound<&'a K>
pub struct BinarytreeRangeIter<'a, T: RangeBounds<&'a [u8]>, K: RadbKey + ?Sized> {
last: Option<RangeIterState<'a>>,
table_id: u64,
query_range: T,
reversed: bool,
manager: &'a PageManager,
_key_type: PhantomData<K>,
}
impl<'a, T: RangeBounds<&'a [u8]>, K: RadbKey + ?Sized> BinarytreeRangeIter<'a, T, K> {
pub(crate) fn new(
root_page: Option<Page<'a>>,
table_id: u64,
query_range: T,
manager: &'a PageManager,
) -> Self {
Self {
last: root_page.map(|p| InitialState(p, false)), // key point, initial state
table_id,
query_range,
reversed: false,
manager,
_key_type: Default::default(),
}
}
pub(crate) fn new_reversed(
root_page: Option<Page<'a>>,
table_id: u64,
query_range: T,
manager: &'a PageManager,
) -> Self {
Self {
last: root_page.map(|p| InitialState(p, true)),
table_id,
query_range,
reversed: true,
manager,
_key_type: Default::default(),
}
}
// TODO: we need generic-associated-types to implement Iterator
// This function main focus is to check if the next entry is in the range
pub fn next(&mut self) -> Option<EntryAccessor> {
if let Some(mut state) = self.last.take() {
loop {
// this loop ensures that it will only return the leaf node, which will store the entry
if let Some(new_state) = state.next(self.manager) {
if let Some(entry) = new_state.get_entry() {
// it is a leaf node, check if it is in the range
// TODO: optimize. This is very inefficient to retrieve and then ignore the values
if self.table_id == entry.table_id()
&& bound_contains_key::<T, K>(&self.query_range, entry.key())
{
self.last = Some(new_state);
return self.last.as_ref().map(|s| s.get_entry().unwrap());
} else {
#[allow(clippy::collapsible_else_if)]
if self.reversed {
if let Bound::Included(start) = self.query_range.start_bound() {
if entry.compare::<K>(self.table_id, *start).is_lt() {
self.last = None;
return None;
}
} else if let Bound::Excluded(start) =
self.query_range.start_bound()
{
if entry.compare::<K>(self.table_id, *start).is_le() {
self.last = None;
return None;
}
}
} else {
if let Bound::Included(end) = self.query_range.end_bound() {
if entry.compare::<K>(self.table_id, *end).is_gt() {
self.last = None;
return None;
}
} else if let Bound::Excluded(end) = self.query_range.end_bound() {
if entry.compare::<K>(self.table_id, *end).is_ge() {
self.last = None;
return None;
}
}
};
state = new_state;
}
} else {
// otherwise, it is an internal node, just continue
state = new_state;
}
} else {
// we have reached the end of the tree
self.last = None;
return None;
}
}
}
None
}
}
pub trait BinarytreeEntry<'a: 'b, 'b> {
fn key(&'b self) -> &'a [u8];
fn value(&'b self) -> &'a [u8];
}
fn cmp_keys<K: RadbKey + ?Sized>(table1: u64, key1: &[u8], table2: u64, key2: &[u8]) -> Ordering {
match table1.cmp(&table2) {
// Why do we need to compare table ids????
// two keys is invalid to be compared if they are from different tables???
// TODO: check this
Ordering::Less => Ordering::Less,
Ordering::Equal => K::compare(key1, key2),
Ordering::Greater => Ordering::Greater,
}
}
fn bound_contains_key<'a, T: RangeBounds<&'a [u8]>, K: RadbKey + ?Sized>(
range: &T,
key: &[u8],
) -> bool {
// helper function to check if a key is within a range
if let Bound::Included(start) = range.start_bound() {
if K::compare(key, *start).is_lt() {
return false;
}
} else if let Bound::Excluded(start) = range.start_bound() {
if K::compare(key, *start).is_le() {
return false;
}
}
if let Bound::Included(end) = range.end_bound() {
if K::compare(key, *end).is_gt() {
return false;
}
} else if let Bound::Excluded(end) = range.end_bound() {
if K::compare(key, *end).is_ge() {
return false;
}
}
true
}
// Provides a simple zero-copy way to access entries
//
// Entry format is:
// * (8 bytes) key_size
// * (8 bytes) table_id, 64-bit big endian unsigned. Stored between key_size & key_data, so that
// it can be read with key_data as a single key_size + 8 length unique key for the entire db
// * (key_size bytes) key_data
// * (8 bytes) value_size
// * (value_size bytes) value_data
pub struct EntryAccessor<'a> {
raw: &'a [u8],
}
impl<'a> EntryAccessor<'a> {
fn new(raw: &'a [u8]) -> Self {
EntryAccessor { raw }
}
fn key_len(&self) -> usize {
u64::from_be_bytes(self.raw[0..8].try_into().unwrap()) as usize
}
pub(crate) fn table_id(&self) -> u64 {
u64::from_be_bytes(self.raw[8..16].try_into().unwrap())
}
fn value_offset(&self) -> usize {
16 + self.key_len() + 8
}
fn value_len(&self) -> usize {
let key_len = self.key_len();
u64::from_be_bytes(
self.raw[(16 + key_len)..(16 + key_len + 8)]
.try_into()
.unwrap(),
) as usize
}
fn raw_len(&self) -> usize {
16 + self.key_len() + 8 + self.value_len()
}
fn compare<K: RadbKey + ?Sized>(&self, table: u64, key: &[u8]) -> Ordering {
cmp_keys::<K>(self.table_id(), self.key(), table, key)
}
}
impl<'a: 'b, 'b> BinarytreeEntry<'a, 'b> for EntryAccessor<'a> {
fn key(&'b self) -> &'a [u8] {
&self.raw[16..(16 + self.key_len())]
}
fn value(&'b self) -> &'a [u8] {
&self.raw[self.value_offset()..(self.value_offset() + self.value_len())]
}
}
// Note the caller is responsible for ensuring that the buffer is large enough
// and rewriting all fields if any dynamically sized fields are written
struct EntryMutator<'a> {
raw: &'a mut [u8],
}
impl<'a> EntryMutator<'a> {
fn new(raw: &'a mut [u8]) -> Self {
EntryMutator { raw }
}
fn write_table_id(&mut self, table_id: u64) {
self.raw[8..16].copy_from_slice(&table_id.to_be_bytes());
}
fn write_key(&mut self, key: &[u8]) {
self.raw[0..8].copy_from_slice(&(key.len() as u64).to_be_bytes());
self.raw[16..(16 + key.len())].copy_from_slice(key);
}
fn write_value(&mut self, value: &[u8]) {
let value_offset = EntryAccessor::new(self.raw).value_offset();
self.raw[(value_offset - 8)..value_offset]
.copy_from_slice(&(value.len() as u64).to_be_bytes());
self.raw[value_offset..(value_offset + value.len())].copy_from_slice(value);
}
}
// Provides a simple zero-copy way to access a leaf page
//
// Entry format is:
// * (1 byte) type: 1 = LEAF
// * (n bytes) lesser_entry
// * (n bytes) greater_entry: optional
struct LeafAccessor<'a: 'b, 'b> {
page: &'b Page<'a>,
}
impl<'a: 'b, 'b> LeafAccessor<'a, 'b> {
fn new(page: &'b Page<'a>) -> Self {
LeafAccessor { page }
}
fn offset_of_lesser(&self) -> usize {
1
}
fn offset_of_greater(&self) -> usize {
1 + self.lesser().raw_len()
}
fn lesser(&self) -> EntryAccessor<'b> {
EntryAccessor::new(&self.page.memory()[self.offset_of_lesser()..])
}
fn greater(&self) -> Option<EntryAccessor<'b>> {
let entry = EntryAccessor::new(&self.page.memory()[self.offset_of_greater()..]);
if entry.key_len() == 0 {
None
} else {
Some(entry)
}
}
}
// Note the caller is responsible for ensuring that the buffer is large enough
// and rewriting all fields if any dynamically sized fields are written
struct LeafBuilder<'a: 'b, 'b> {
page: &'b mut PageMut<'a>,
}
impl<'a: 'b, 'b> LeafBuilder<'a, 'b> {
fn new(page: &'b mut PageMut<'a>) -> Self {
page.memory_mut()[0] = LEAF;
LeafBuilder { page }
}
fn write_lesser(&mut self, table_id: u64, key: &[u8], value: &[u8]) {
let mut entry = EntryMutator::new(&mut self.page.memory_mut()[1..]);
entry.write_table_id(table_id);
entry.write_key(key);
entry.write_value(value);
}
fn write_greater(&mut self, entry: Option<(u64, &[u8], &[u8])>) {
let offset = 1 + EntryAccessor::new(&self.page.memory()[1..]).raw_len();
let mut writer = EntryMutator::new(&mut self.page.memory_mut()[offset..]);
if let Some((table_id, key, value)) = entry {
writer.write_table_id(table_id);
writer.write_key(key);
writer.write_value(value);
} else {
writer.write_key(&[]);
}
}
}
// Provides a simple zero-copy way to access an internal page
//
// Entry format is:
// * (1 byte) type: 2 = INTERNAL
// * (8 bytes) key_len
// * (8 bytes) table_id 64-bit big-endian unsigned
// * (key_len bytes) key_data
// * (8 bytes) lte_page: page number for keys <= key_data
// * (8 bytes) gt_page: page number for keys > key_data
struct InternalAccessor<'a: 'b, 'b> {
page: &'b Page<'a>,
}
impl<'a: 'b, 'b> InternalAccessor<'a, 'b> {
fn new(page: &'b Page<'a>) -> Self {
InternalAccessor { page }
}
fn key_len(&self) -> usize {
u64::from_be_bytes(self.page.memory()[1..9].try_into().unwrap()) as usize
}
fn table_id(&self) -> u64 {
u64::from_be_bytes(self.page.memory()[9..17].try_into().unwrap())
}
fn key(&self) -> &[u8] {
&self.page.memory()[17..(17 + self.key_len())]
}
fn lte_page(&self) -> u64 {
let offset = 17 + self.key_len();
u64::from_be_bytes(self.page.memory()[offset..(offset + 8)].try_into().unwrap())
}
fn gt_page(&self) -> u64 {
let offset = 17 + self.key_len() + 8;
u64::from_be_bytes(self.page.memory()[offset..(offset + 8)].try_into().unwrap())
}
}
// Note the caller is responsible for ensuring that the buffer is large enough
// and rewriting all fields if any dynamically sized fields are written
struct InternalBuilder<'a: 'b, 'b> {
page: &'b mut PageMut<'a>,
}
impl<'a: 'b, 'b> InternalBuilder<'a, 'b> {
fn new(page: &'b mut PageMut<'a>) -> Self {
page.memory_mut()[0] = INTERNAL;
InternalBuilder { page }
}
fn key_len(&self) -> usize {
u64::from_be_bytes(self.page.memory()[1..9].try_into().unwrap()) as usize
}
fn write_table_and_key(&mut self, table_id: u64, key: &[u8]) {
self.page.memory_mut()[1..9].copy_from_slice(&(key.len() as u64).to_be_bytes());
self.page.memory_mut()[9..17].copy_from_slice(&table_id.to_be_bytes());
self.page.memory_mut()[17..(17 + key.len())].copy_from_slice(key);
}
fn write_lte_page(&mut self, page_number: u64) {
let offset = 17 + self.key_len();
self.page.memory_mut()[offset..(offset + 8)].copy_from_slice(&page_number.to_be_bytes());
}
fn write_gt_page(&mut self, page_number: u64) {
let offset = 17 + self.key_len() + 8;
self.page.memory_mut()[offset..(offset + 8)].copy_from_slice(&page_number.to_be_bytes());
}
}
// Returns the page number of the sub-tree with this key deleted, or None if the sub-tree is empty.
// If key is not found, guaranteed not to modify the tree
pub(crate) fn tree_delete<'a, K: RadbKey + ?Sized>(
page: Page<'a>,
table: u64,
key: &[u8],
manager: &'a PageManager,
) -> Option<u64> {
let node_mem = page.memory();
match node_mem[0] {
LEAF => {
let accessor = LeafAccessor::new(&page);
#[allow(clippy::collapsible_else_if)]
if let Some(greater) = accessor.greater() {
if accessor.lesser().compare::<K>(table, key).is_ne()
&& greater.compare::<K>(table, key).is_ne()
{
// Not found
return Some(page.get_page_number());
}
// Found, create a new leaf with the other key
let new_leaf = if accessor.lesser().compare::<K>(table, key).is_eq() {
Leaf(
(
greater.table_id(),
greater.key().to_vec(),
greater.value().to_vec(),
),
None,
)
} else {
Leaf(
(
accessor.lesser().table_id(),
accessor.lesser().key().to_vec(),
accessor.lesser().value().to_vec(),
),
None,
)
};
// TODO: shouldn't need to drop this, but we can't allocate when there are pages in flight
drop(page);
Some(new_leaf.to_bytes(manager))
} else {
if accessor.lesser().compare::<K>(table, key).is_eq() {
// Deleted the entire left
None
} else {
// Not found
Some(page.get_page_number())
}
}
}
INTERNAL => {
let accessor = InternalAccessor::new(&page);
let original_left_page = accessor.lte_page();
let original_right_page = accessor.gt_page();
let original_page_number = page.get_page_number();
let mut left_page = accessor.lte_page();
let mut right_page = accessor.gt_page();
// TODO: we should recompute our key, since it may now be smaller (if the largest key in the left tree was deleted)
let our_table = accessor.table_id();
let our_key = accessor.key().to_vec();
// TODO: shouldn't need to drop this, but we can't allocate when there are pages in flight
drop(page);
#[allow(clippy::collapsible_else_if)]
if cmp_keys::<K>(table, key, our_table, our_key.as_slice()).is_le() {
if let Some(page_number) =
tree_delete::<K>(manager.get_page(left_page), table, key, manager)
{
left_page = page_number;
} else {
// The entire left sub-tree was deleted, replace ourself with the right tree
return Some(right_page);
}
} else {
if let Some(page_number) =
tree_delete::<K>(manager.get_page(right_page), table, key, manager)
{
right_page = page_number;
} else {
return Some(left_page);
}
}
// The key was not found, since neither sub-tree changed
if left_page == original_left_page && right_page == original_right_page {
return Some(original_page_number);
}
// MVCC read isolation: (snapshot)
// If we remove something in the sub-tree, we will allocate spaces
// for all the affected nodes, actually, which means that the root node
// will also be a new allocated page, which make us achieve read isolation
let mut page = manager.allocate();
let mut builder = InternalBuilder::new(&mut page);
builder.write_table_and_key(our_table, &our_key);
builder.write_lte_page(left_page);
builder.write_gt_page(right_page);
Some(page.get_page_number())
}
_ => unreachable!(),
}
}
// Returns the page number of the sub-tree into which the key was inserted
pub(crate) fn tree_insert<'a, K: RadbKey + ?Sized>(
page: Page<'a>,
table: u64,
key: &[u8],
value: &[u8],
manager: &'a PageManager,
) -> u64 {
let node_mem = page.memory();
match node_mem[0] {
LEAF => {
// in a binary search tree (BST), every non-duplicated key-value
// pair should always be inserted at a leaf node.
let accessor = LeafAccessor::new(&page);
// TODO: this is suboptimal, because it may rebuild the leaf page even if it's not necessary:
// e.g. when we insert a second leaf adjacent without modifying this one
let mut builder = BinarytreeBuilder::new();
builder.add(table, key, value);
if accessor.lesser().compare::<K>(table, key).is_ne() {
builder.add(
accessor.lesser().table_id(),
accessor.lesser().key(),
accessor.lesser().value(),
);
}
if let Some(entry) = accessor.greater() {
if entry.compare::<K>(table, key).is_ne() {
builder.add(entry.table_id(), entry.key(), entry.value());
}
}
// TODO: shouldn't need to drop this, but we can't allocate when there are pages in flight
// This guaranteed the MVCC read isolation, since every conflicting page will be dropped.
drop(page);
builder.build::<K>().to_bytes(manager)
}
INTERNAL => {
let accessor = InternalAccessor::new(&page);
let mut left_page = accessor.lte_page();
let mut right_page = accessor.gt_page();
let our_table = accessor.table_id();
let our_key = accessor.key().to_vec();
// TODO: shouldn't need to drop this, but we can't allocate when there are pages in flight
// This guaranteed the MVCC read isolation, since every conflicting page will be dropped.
drop(page);
if (table, key) <= (our_table, our_key.as_slice()) {
left_page =
tree_insert::<K>(manager.get_page(left_page), table, key, value, manager);
} else {
right_page =
tree_insert::<K>(manager.get_page(right_page), table, key, value, manager);
}
// create the new root node
let mut page = manager.allocate();
let mut builder = InternalBuilder::new(&mut page);
builder.write_table_and_key(our_table, &our_key);
builder.write_lte_page(left_page);
builder.write_gt_page(right_page);
page.get_page_number()
}
_ => unreachable!(),
}
}
/// Returns a tuple of the form `(Page<'a>, usize, usize)` representing the value for
/// a queried key within a binary tree if present.
///
/// The binary tree is composed of Nodes serialized into `Page`s and maintained by a `PageManager`.
/// This function attempts to locate a key within this tree and if found, returns a tuple where:
/// - The first element is the `Page` in which the value is located
/// - The second element is the offset within that page where the value begins
/// - The third element is the length of the value
///
/// Given a key, the function begins at the root of the tree and traverses to the left or right
/// child depending on whether the key is less or greater than the current node's key. The process
/// is recursive and continues until the key is either found or it is determined that the key does not exist in the tree.
///
/// This function might not be space efficient since it allocates a whole page for each node,
/// leading to a waste of space when nodes don't fully occupy their corresponding pages.
/// Future optimizations could involve storing multiple nodes within a single page, or having variable
/// size pages to better match the size of nodes.
///
/// # Arguments
///
/// * `page` - The `Page` object representing the current node being inspected.
/// * `query` - The key being searched for.
/// * `manager` - The `PageManager` managing the pages.
///
/// # Returns
///
/// An `Option` that contains a tuple `(Page<'a>, usize, usize)`. If the key is found, it returns `Some`,
/// with the `Page` containing the value, the offset of the value within the page, and the length of the value.
/// If the key is not found in the tree, it returns `None`.
///
/// # Panics
///
/// This function will panic if it encounters a byte in the `Page` memory that does not correspond to a
/// recognized node type (1 for leaf node or 2 for internal node).
pub(crate) fn lookup_in_raw<'a, K: RadbKey + ?Sized>(
page: Page<'a>,
table: u64,
query: &[u8],
manager: &'a PageManager,
) -> Option<(Page<'a>, usize, usize)> {
let node_mem = page.memory();
match node_mem[0] {
LEAF => {
// Leaf node
let accessor = LeafAccessor::new(&page);
match cmp_keys::<K>(
table,
query,
accessor.lesser().table_id(),
accessor.lesser().key(),
) {
Ordering::Less => None,
Ordering::Equal => {
let offset = accessor.offset_of_lesser() + accessor.lesser().value_offset();
let value_len = accessor.lesser().value().len();
Some((page, offset, value_len))
}
Ordering::Greater => {
if let Some(entry) = accessor.greater() {
if entry.compare::<K>(table, query).is_eq() {
let offset = accessor.offset_of_greater() + entry.value_offset();
let value_len = entry.value().len();
Some((page, offset, value_len))
} else {
None
}
} else {
None
}
}
}
}
INTERNAL => {
let accessor = InternalAccessor::new(&page);
let left_page = accessor.lte_page();
let right_page = accessor.gt_page();
if cmp_keys::<K>(table, query, accessor.table_id(), accessor.key()).is_le() {
lookup_in_raw::<K>(manager.get_page(left_page), table, query, manager)
} else {
lookup_in_raw::<K>(manager.get_page(right_page), table, query, manager)
}
}
_ => unreachable!(),
}
}
#[derive(Eq, PartialEq, Debug)]
pub(crate) enum Node {
Leaf((u64, Vec<u8>, Vec<u8>), Option<(u64, Vec<u8>, Vec<u8>)>), // (table, key, value), (table, key, value)
Internal(Box<Node>, u64, Vec<u8>, Box<Node>), // (left, table, key, right)
}
impl Node {
// Returns the page number that the node was written to
pub(crate) fn to_bytes(&self, page_manager: &PageManager) -> u64 {
match self {
Node::Leaf(left_val, right_val) => {
let mut page = page_manager.allocate();
let mut builder = LeafBuilder::new(&mut page);
builder.write_lesser(left_val.0, &left_val.1, &left_val.2);
builder.write_greater(
right_val
.as_ref()
.map(|(table, key, value)| (*table, key.as_slice(), value.as_slice())),
);
page.get_page_number()
}
Node::Internal(left, table, key, right) => {
let left_page = left.to_bytes(page_manager);
let right_page = right.to_bytes(page_manager);
let mut page = page_manager.allocate();
let mut builder = InternalBuilder::new(&mut page);
builder.write_table_and_key(*table, key);
builder.write_lte_page(left_page);
builder.write_gt_page(right_page);
page.get_page_number()
}
}
}
fn get_max_key(&self) -> (u64, Vec<u8>) {
match self {
Node::Leaf((left_table, left_key, _), right_val) => {
if let Some((right_table, right_key, _)) = right_val {
(*right_table, right_key.to_vec())
} else {
(*left_table, left_key.to_vec())
}
}
Node::Internal(_left, _table, _key, right) => right.get_max_key(),
}
}
}
pub(crate) struct BinarytreeBuilder {
pairs: Vec<(u64, Vec<u8>, Vec<u8>)>,
}
impl BinarytreeBuilder {
pub(crate) fn new() -> BinarytreeBuilder {
BinarytreeBuilder { pairs: vec![] }
}
pub(crate) fn add(&mut self, table: u64, key: &[u8], value: &[u8]) {
self.pairs.push((table, key.to_vec(), value.to_vec()));
}
/// Builds a balanced binary tree from the provided key-value pairs.
///
/// This function operates by first sorting the pairs by key to ensure balance, then
/// constructs the tree by creating leaves from pairs of elements and combining them
/// into internal nodes. If there is an odd number of elements, the last one is handled separately.
///
/// The tree is built in a bottom-up manner, i.e., leaves are created first and then
/// internal nodes are created by combining these leaves. This process continues until
/// we have a single node, which is the root of the tree.
///
/// A critical part of this function is the `maybe_previous_node` variable.
/// This variable is used to hold a node from the previous iteration of the loop,
/// effectively serving as a 'buffer'. This buffering is essential because,
/// for each internal (non-leaf) node, we need two child nodes. However,
/// we're processing the nodes one at a time. So after processing one node,
/// we store it in `maybe_previous_node` until we process the next node.
/// After the second node is processed, we can then create an internal node
/// with `maybe_previous_node` and the second node as its children.
///
/// The use of `maybe_previous_node` is similar to a state machine.
/// After every two nodes are processed, the state is reset
/// (by creating an internal node and clearing maybe_previous_node),
/// and the process starts over for the next pair of nodes.
/// This continues until we only have one node left, which is the root of the tree.
///
/// # Panics
///
/// This function will panic if the `pairs` vector is empty, as it's not possible to build
/// a tree without any nodes.
///
/// It will also panic in case a duplicate key is encountered during tree building, as
/// it currently does not support overwriting existing keys.
///
/// # Returns
///
/// This function returns the root `Node` of the constructed tree.
pub(crate) fn build<K: RadbKey + ?Sized>(mut self) -> Node {
// we want a balanced tree, so we sort the pairs by key
assert!(!self.pairs.is_empty());
self.pairs.sort_by(|(table1, key1, _), (table2, key2, _)| {
cmp_keys::<K>(*table1, key1, *table2, key2)
});
let mut leaves = vec![];
// create leaves from pairs of elements
for group in self.pairs.chunks(2) {
let leaf = if group.len() == 1 {
Leaf((group[0].0, group[0].1.to_vec(), group[0].2.to_vec()), None)
} else {
assert_eq!(group.len(), 2);
if (group[0].0, &group[0].1) == (group[1].0, &group[1].1) {
// This cannot happend, since we implement the overwriting feature
// put the panic here to make sure we don't have bugs in the future
panic!("duplicate key: {:?}", group[0].0);
}
Leaf(
(group[0].0, group[0].1.to_vec(), group[0].2.to_vec()),
Some((group[1].0, group[1].1.to_vec(), group[1].2.to_vec())),
)
};
leaves.push(leaf);
}
let mut bottom = leaves;
let maybe_previous_node: Cell<Option<Node>> = Cell::new(None);
// build the tree bottom-up
while bottom.len() > 1 {
let mut internals = vec![];
for node in bottom.drain(..) {
// state machine: if we have a previous node, create an internal node
// and reset the state, otherwise store the current node in the state
if let Some(previous_node) = maybe_previous_node.take() {
// pick a key for the internal node
let (table, key) = previous_node.get_max_key();
let internal = Internal(Box::new(previous_node), table, key, Box::new(node));
internals.push(internal)
} else {
maybe_previous_node.set(Some(node));
}
}
if let Some(previous_node) = maybe_previous_node.take() {
internals.push(previous_node);
}
bottom = internals
}
bottom.pop().unwrap()
}
}
#[cfg(test)]
mod test {
use crate::binarytree::Node::{Internal, Leaf};
use crate::binarytree::{BinarytreeBuilder, Node};
fn gen_tree() -> Node {
let left = Leaf(
(1, b"hello".to_vec(), b"world".to_vec()),
Some((1, b"hello2".to_vec(), b"world2".to_vec())),
);
let right = Leaf((1, b"hello3".to_vec(), b"world3".to_vec()), None);
Internal(Box::new(left), 1, b"hello2".to_vec(), Box::new(right))
}
#[test]
fn builder() {
let expected = gen_tree();
let mut builder = BinarytreeBuilder::new();
builder.add(1, b"hello2", b"world2");
builder.add(1, b"hello3", b"world3");
builder.add(1, b"hello", b"world");
assert_eq!(expected, builder.build::<[u8]>());
}
}