1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
use crate::error::Error;
use crate::storage::Storage;
use crate::transactions::WriteTransaction;
use crate::types::RadbKey;
use crate::ReadOnlyTransaction;
use std::marker::PhantomData;

pub struct Table<'mmap, K: RadbKey + ?Sized> {
    storage: &'mmap Storage,
    table_id: u64,
    _key_type: PhantomData<K>,
}

impl<'mmap, K: RadbKey + ?Sized> Table<'mmap, K> {
    pub(crate) fn new(table_id: u64, storage: &'mmap Storage) -> Result<Table<'mmap, K>, Error> {
        Ok(Table {
            storage,
            table_id,
            _key_type: Default::default(),
        })
    }

    pub fn begin_write(&'_ mut self) -> Result<WriteTransaction<'mmap, K>, Error> {
        Ok(WriteTransaction::new(self.table_id, self.storage))
    }

    pub fn read_transaction(&'_ self) -> Result<ReadOnlyTransaction<'mmap, K>, Error> {
        Ok(ReadOnlyTransaction::new(self.table_id, self.storage))
    }
}

#[cfg(test)]
mod test {
    use crate::binarytree::BinarytreeEntry;
    use crate::types::{RadbKey, RefLifetime, WithLifetime};
    use crate::{Database, Table};
    use std::cmp::Ordering;
    use tempfile::NamedTempFile;

    #[test]
    fn len() {
        let tmpfile: NamedTempFile = NamedTempFile::new().unwrap();
        let db = unsafe { Database::open(tmpfile.path()).unwrap() };
        let mut table: Table<[u8]> = db.open_table(b"x").unwrap();
        let mut write_txn = table.begin_write().unwrap();
        write_txn.insert(b"hello", b"world").unwrap();
        write_txn.insert(b"hello2", b"world2").unwrap();
        write_txn.insert(b"hi", b"world").unwrap();
        write_txn.commit().unwrap();
        let read_txn = table.read_transaction().unwrap();
        assert_eq!(read_txn.len().unwrap(), 3);
    }

    #[test]
    fn multiple_tables() {
        let tmpfile: NamedTempFile = NamedTempFile::new().unwrap();
        let db = unsafe { Database::open(tmpfile.path()).unwrap() };
        let mut table: Table<[u8]> = db.open_table(b"1").unwrap();
        let mut table2: Table<[u8]> = db.open_table(b"2").unwrap();

        let mut write_txn = table.begin_write().unwrap();
        write_txn.insert(b"hello", b"world").unwrap();
        write_txn.commit().unwrap();
        let mut write_txn2 = table2.begin_write().unwrap();
        write_txn2.insert(b"hello", b"world2").unwrap();
        write_txn2.commit().unwrap();

        let read_txn = table.read_transaction().unwrap();
        assert_eq!(read_txn.len().unwrap(), 1);
        assert_eq!(b"world", read_txn.get(b"hello").unwrap().unwrap().as_ref());
        let read_txn2 = table2.read_transaction().unwrap();
        assert_eq!(read_txn2.len().unwrap(), 1);
        assert_eq!(
            b"world2",
            read_txn2.get(b"hello").unwrap().unwrap().as_ref()
        );
    }

    #[test]
    fn is_empty() {
        let tmpfile: NamedTempFile = NamedTempFile::new().unwrap();
        let db = unsafe { Database::open(tmpfile.path()).unwrap() };
        let mut table: Table<[u8]> = db.open_table(b"x").unwrap();
        let read_txn = table.read_transaction().unwrap();
        assert!(read_txn.is_empty().unwrap());
        let mut write_txn = table.begin_write().unwrap();
        write_txn.insert(b"hello", b"world").unwrap();
        write_txn.commit().unwrap();
        let read_txn = table.read_transaction().unwrap();
        assert!(!read_txn.is_empty().unwrap());
    }

    #[test]
    fn abort() {
        let tmpfile: NamedTempFile = NamedTempFile::new().unwrap();
        let db = unsafe { Database::open(tmpfile.path()).unwrap() };
        let mut table: Table<[u8]> = db.open_table(b"x").unwrap();
        let read_txn = table.read_transaction().unwrap();
        assert!(read_txn.is_empty().unwrap());
        let mut write_txn = table.begin_write().unwrap();
        write_txn.insert(b"hello", b"aborted").unwrap();
        assert_eq!(
            b"aborted",
            write_txn.get(b"hello").unwrap().unwrap().as_ref()
        );
        write_txn.abort().unwrap();
        let read_txn = table.read_transaction().unwrap();
        assert!(read_txn.is_empty().unwrap());
        let mut write_txn = table.begin_write().unwrap();
        write_txn.insert(b"hello", b"world").unwrap();
        write_txn.commit().unwrap();
        let read_txn = table.read_transaction().unwrap();
        assert_eq!(b"world", read_txn.get(b"hello").unwrap().unwrap().as_ref());
        assert_eq!(read_txn.len().unwrap(), 1);
    }

    #[test]
    fn insert_overwrite() {
        let tmpfile: NamedTempFile = NamedTempFile::new().unwrap();
        let db = unsafe { Database::open(tmpfile.path()).unwrap() };
        let mut table: Table<[u8]> = db.open_table(b"x").unwrap();
        let mut write_txn = table.begin_write().unwrap();
        write_txn.insert(b"hello", b"world").unwrap();
        write_txn.commit().unwrap();
        let read_txn = table.read_transaction().unwrap();
        assert_eq!(b"world", read_txn.get(b"hello").unwrap().unwrap().as_ref());

        let mut write_txn = table.begin_write().unwrap();
        write_txn.insert(b"hello", b"replaced").unwrap();
        write_txn.commit().unwrap();
        let read_txn = table.read_transaction().unwrap();
        assert_eq!(
            b"replaced",
            read_txn.get(b"hello").unwrap().unwrap().as_ref()
        );
    }

    #[test]
    fn insert_reserve() {
        let tmpfile: NamedTempFile = NamedTempFile::new().unwrap();
        let db = unsafe { Database::open(tmpfile.path()).unwrap() };
        let mut table: Table<[u8]> = db.open_table(b"x").unwrap();
        let mut write_txn = table.begin_write().unwrap();
        let value = b"world";
        let reserved = write_txn.insert_reserve(b"hello", value.len()).unwrap();
        reserved.copy_from_slice(value);
        write_txn.commit().unwrap();
        let read_txn = table.read_transaction().unwrap();
        assert_eq!(value, read_txn.get(b"hello").unwrap().unwrap().as_ref());
    }

    #[test]
    fn delete() {
        let tmpfile: NamedTempFile = NamedTempFile::new().unwrap();
        let db = unsafe { Database::open(tmpfile.path()).unwrap() };
        let mut table: Table<[u8]> = db.open_table(b"x").unwrap();

        let mut write_txn = table.begin_write().unwrap();
        write_txn.insert(b"hello", b"world").unwrap();
        write_txn.insert(b"hello2", b"world").unwrap();
        write_txn.commit().unwrap();
        let read_txn = table.read_transaction().unwrap();
        assert_eq!(b"world", read_txn.get(b"hello").unwrap().unwrap().as_ref());
        assert_eq!(read_txn.len().unwrap(), 2);

        let mut write_txn = table.begin_write().unwrap();
        write_txn.remove(b"hello").unwrap();
        write_txn.commit().unwrap();

        let read_txn = table.read_transaction().unwrap();
        assert!(read_txn.get(b"hello").unwrap().is_none());
        assert_eq!(read_txn.len().unwrap(), 1);
    }

    #[test]
    fn no_dirty_reads() {
        // Confirming the isolation property of ACID compliance.
        // In database systems, a "dirty read" happens when a transaction reads data
        // that has been written by another transaction that has not yet committed.
        // This can lead to inconsistencies if the writing transaction fails
        // and rolls back, because the reading transaction will have read
        // (and potentially acted upon) data that was never officially
        // committed to the database.

        let tmpfile: NamedTempFile = NamedTempFile::new().unwrap();
        let db = unsafe { Database::open(tmpfile.path()).unwrap() };
        let mut table: Table<[u8]> = db.open_table(b"x").unwrap();

        let mut write_txn = table.begin_write().unwrap();
        write_txn.insert(b"hello", b"world").unwrap();
        let read_txn = table.read_transaction().unwrap();
        assert!(read_txn.get(b"hello").unwrap().is_none());
        assert!(read_txn.is_empty().unwrap());
        write_txn.commit().unwrap();

        let read_txn = table.read_transaction().unwrap();
        assert_eq!(b"world", read_txn.get(b"hello").unwrap().unwrap().as_ref());
    }

    #[test]
    fn read_isolation() {
        // Read isolation in MVCC:
        // Read transactions see a snapshot of the database at the point in
        // the time when they astarted, they are not affected by subsequent
        // write transactions This allows for high concurrency, as read transactions
        // do not need to wait for write transactions to commit, they simply work on
        // the version that was current when they started.
        let tmpfile: NamedTempFile = NamedTempFile::new().unwrap();
        let db = unsafe { Database::open(tmpfile.path()).unwrap() };
        let mut table: Table<[u8]> = db.open_table(b"x").unwrap();

        // first write transaction
        let mut write_txn = table.begin_write().unwrap();
        write_txn.insert(b"hello", b"world").unwrap();
        write_txn.commit().unwrap();

        // first read transaction
        let read_txn = table.read_transaction().unwrap();
        assert_eq!(b"world", read_txn.get(b"hello").unwrap().unwrap().as_ref());

        // second write transaction
        let mut write_txn = table.begin_write().unwrap();
        write_txn.remove(b"hello").unwrap();
        write_txn.insert(b"hello2", b"world2").unwrap();
        write_txn.insert(b"hello3", b"world3").unwrap();
        write_txn.commit().unwrap();

        // second read transaction
        let read_txn2 = table.read_transaction().unwrap();
        assert!(read_txn2.get(b"hello").unwrap().is_none());
        assert_eq!(
            b"world2",
            read_txn2.get(b"hello2").unwrap().unwrap().as_ref()
        );
        assert_eq!(
            b"world3",
            read_txn2.get(b"hello3").unwrap().unwrap().as_ref()
        );
        assert_eq!(read_txn2.len().unwrap(), 2);

        // check read isolation: the first read transaction does not see any changes
        assert_eq!(b"world", read_txn.get(b"hello").unwrap().unwrap().as_ref());
        assert!(read_txn.get(b"hello2").unwrap().is_none());
        assert!(read_txn.get(b"hello3").unwrap().is_none());
        assert_eq!(read_txn.len().unwrap(), 1);
    }

    #[test]
    fn read_isolation2() {
        let tmpfile: NamedTempFile = NamedTempFile::new().unwrap();
        let db = unsafe { Database::open(tmpfile.path()).unwrap() };
        let mut table: Table<[u8]> = db.open_table(b"x").unwrap();

        // write transaction 1
        let mut write_txn = table.begin_write().unwrap();
        write_txn.insert(b"a", b"world").unwrap(); // "a" will be in a leaf
        write_txn.insert(b"b", b"hello").unwrap(); // "b" will be in a leaf
        write_txn.insert(b"c", b"hi").unwrap(); // "c" will be the root
        write_txn.commit().unwrap();

        // read transaction 1
        let read_txn = table.read_transaction().unwrap();
        assert_eq!(b"world", read_txn.get(b"a").unwrap().unwrap().as_ref());
        assert_eq!(b"hello", read_txn.get(b"b").unwrap().unwrap().as_ref());
        assert_eq!(b"hi", read_txn.get(b"c").unwrap().unwrap().as_ref());

        // write transaction 2
        let mut write_txn = table.begin_write().unwrap();
        write_txn.remove(b"a").unwrap(); // delete from leaf
        write_txn.insert(b"d", b"test").unwrap(); // insert into leaf
        write_txn.commit().unwrap();

        // read transaction 2
        let read_txn2 = table.read_transaction().unwrap();
        assert!(read_txn2.get(b"a").unwrap().is_none());
        assert_eq!(b"hello", read_txn2.get(b"b").unwrap().unwrap().as_ref());
        assert_eq!(b"hi", read_txn2.get(b"c").unwrap().unwrap().as_ref());
        assert_eq!(b"test", read_txn2.get(b"d").unwrap().unwrap().as_ref());

        // check read isolation: read_txn should still see the old state
        assert_eq!(b"world", read_txn.get(b"a").unwrap().unwrap().as_ref());
        assert_eq!(b"hello", read_txn.get(b"b").unwrap().unwrap().as_ref());
        assert_eq!(b"hi", read_txn.get(b"c").unwrap().unwrap().as_ref());
        assert!(read_txn.get(b"d").unwrap().is_none());
    }

    #[test]
    fn read_isolation_complex_tree() {
        // Read isolation in MVCC:
        // Read transactions see a snapshot of the database at the point in
        // time when they started, they are not affected by subsequent
        // write transactions. This allows for high concurrency, as read transactions
        // do not need to wait for write transactions to commit, they simply work on
        // the version that was current when they started.
        //
        // TODO: Support read isolation in updating
        let tmpfile: NamedTempFile = NamedTempFile::new().unwrap();
        let db = unsafe { Database::open(tmpfile.path()).unwrap() };
        let mut table: Table<[u8]> = db.open_table(b"x").unwrap();

        // first write transaction - create complex tree
        let mut write_txn = table.begin_write().unwrap();
        write_txn.insert(b"hello", b"world").unwrap();
        write_txn.insert(b"foo", b"bar").unwrap();
        write_txn.insert(b"alpha", b"beta").unwrap();
        write_txn.insert(b"rust", b"cool").unwrap();
        write_txn.commit().unwrap();

        // first read transaction
        let read_txn = table.read_transaction().unwrap();
        assert_eq!(b"world", read_txn.get(b"hello").unwrap().unwrap().as_ref());
        assert_eq!(b"bar", read_txn.get(b"foo").unwrap().unwrap().as_ref());
        assert_eq!(b"beta", read_txn.get(b"alpha").unwrap().unwrap().as_ref());
        assert_eq!(b"cool", read_txn.get(b"rust").unwrap().unwrap().as_ref());

        // second write transaction - update existing keys but don't change the root
        let mut write_txn = table.begin_write().unwrap();
        write_txn.insert(b"hello", b"world2").unwrap();
        write_txn.insert(b"foo", b"bar2").unwrap();
        write_txn.insert(b"alpha", b"beta2").unwrap();
        write_txn.insert(b"rust", b"cool2").unwrap();
        write_txn.commit().unwrap();

        // second read transaction
        let read_txn2 = table.read_transaction().unwrap();
        assert_eq!(
            b"world2",
            read_txn2.get(b"hello").unwrap().unwrap().as_ref()
        );
        assert_eq!(b"bar2", read_txn2.get(b"foo").unwrap().unwrap().as_ref());
        assert_eq!(b"beta2", read_txn2.get(b"alpha").unwrap().unwrap().as_ref());
        assert_eq!(b"cool2", read_txn2.get(b"rust").unwrap().unwrap().as_ref());

        // check read isolation: the first read transaction does not see any changes
        // since we change to completly another new tree, all the nodes are newly allocated
        assert_eq!(b"world", read_txn.get(b"hello").unwrap().unwrap().as_ref());
        assert_eq!(b"bar", read_txn.get(b"foo").unwrap().unwrap().as_ref());
        assert_eq!(b"beta", read_txn.get(b"alpha").unwrap().unwrap().as_ref());
        assert_eq!(b"cool", read_txn.get(b"rust").unwrap().unwrap().as_ref());
    }

    #[test]
    fn range_query() {
        let tmpfile: NamedTempFile = NamedTempFile::new().unwrap();
        let db = unsafe { Database::open(tmpfile.path()).unwrap() };
        let mut table: Table<[u8]> = db.open_table(b"x").unwrap();

        let mut write_txn = table.begin_write().unwrap();
        for i in 0..10u8 {
            let key = vec![i];
            write_txn.insert(&key, b"value").unwrap();
        }
        write_txn.commit().unwrap();
        let read_txn = table.read_transaction().unwrap();
        let start = vec![3u8];
        let end = vec![7u8];
        let mut iter = read_txn
            .get_range(start.as_slice()..end.as_slice())
            .unwrap();
        for i in 3..7u8 {
            let entry = iter.next().unwrap();
            assert_eq!(&[i], entry.key());
            assert_eq!(b"value", entry.value());
        }
        assert!(iter.next().is_none());
    }

    #[test]
    fn range_query_reversed() {
        let tmpfile: NamedTempFile = NamedTempFile::new().unwrap();
        let db = unsafe { Database::open(tmpfile.path()).unwrap() };
        let mut table: Table<[u8]> = db.open_table(b"x").unwrap();

        let mut write_txn = table.begin_write().unwrap();
        for i in 0..10u8 {
            let key = vec![i];
            write_txn.insert(&key, b"value").unwrap();
        }
        write_txn.commit().unwrap();
        let read_txn = table.read_transaction().unwrap();
        let start = vec![3u8];
        let end = vec![7u8];
        let mut iter = read_txn
            .get_range_reversed(start.as_slice()..end.as_slice())
            .unwrap();
        for i in (3..7u8).rev() {
            let entry = iter.next().unwrap();
            assert_eq!(&[i], entry.key());
            assert_eq!(b"value", entry.value());
        }
        assert!(iter.next().is_none());
    }

    #[test]
    fn custom_ordering() {
        struct ReverseKey(Vec<u8>);
        impl RadbKey for ReverseKey {
            type View = RefLifetime<[u8]>;

            fn from_bytes(data: &[u8]) -> <Self::View as WithLifetime>::Out {
                data
            }

            fn as_bytes(&self) -> &[u8] {
                &self.0
            }

            fn compare(data1: &[u8], data2: &[u8]) -> Ordering {
                data2.cmp(data1)
            }
        }

        let tmpfile: NamedTempFile = NamedTempFile::new().unwrap();
        let db = unsafe { Database::open(tmpfile.path()).unwrap() };
        let mut table: Table<ReverseKey> = db.open_table(b"x").unwrap();

        let mut write_txn = table.begin_write().unwrap();
        for i in 0..10u8 {
            let key = vec![i];
            write_txn.insert(&ReverseKey(key), b"value").unwrap();
        }
        write_txn.commit().unwrap();
        let read_txn = table.read_transaction().unwrap();
        let start = vec![7u8]; // ReverseKey is used, so 7 < 3
        let end = vec![3u8];
        let mut iter = read_txn
            .get_range(start.as_slice()..=end.as_slice())
            .unwrap();
        for i in (3..=7u8).rev() {
            let entry = iter.next().unwrap();
            dbg!(entry.table_id(), entry.key());
            assert_eq!(&[i], entry.key());
            assert_eq!(b"value", entry.value());
        }
        assert!(iter.next().is_none());
    }
}